RobustGaSP: Robust Gaussian Stochastic Process Emulation in R
نویسندگان
چکیده
منابع مشابه
Outlier Robust Gaussian Process Classification
Gaussian process classifiers (GPCs) are a fully statistical model for kernel classification. We present a form of GPC which is robust to labeling errors in the data set. This model allows label noise not only near the class boundaries, but also far from the class boundaries which can result from mistakes in labelling or gross errors in measuring the input features. We derive an outlier robust a...
متن کاملParallelizing Gaussian Process Calculations in R
We consider parallel computation for Gaussian process calculations to overcome computational and memory constraints on the size of datasets that can be analyzed. Using a hybrid parallelization approach that uses both threading (shared memory) and messagepassing (distributed memory), we implement the core linear algebra operations used in spatial statistics and Gaussian process regression in an ...
متن کاملGaussian Process Approximations of Stochastic Differential Equations
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presen...
متن کاملGaussian Process Neurons Learn Stochastic Activation Functions
We propose stochastic, non-parametric activation functions that are fully learnable and individual to each neuron. Complexity and the risk of overfitting are controlled by placing a Gaussian process prior over these functions. The result is the Gaussian process neuron, a probabilistic unit that can be used as the basic building block for probabilistic graphical models that resemble the structur...
متن کاملRobust Multi-Class Gaussian Process Classification
Multi-class Gaussian Process Classifiers (MGPCs) are often affected by overfitting problems when labeling errors occur far from the decision boundaries. To prevent this, we investigate a robust MGPC (RMGPC) which considers labeling errors independently of their distance to the decision boundaries. Expectation propagation is used for approximate inference. Experiments with several datasets in wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The R Journal
سال: 2019
ISSN: 2073-4859
DOI: 10.32614/rj-2019-011